
    Journal Of Advanced Networking and Applications                                                                             30 
    Vol. 01  No. 01 pages: 30-39 (2009) 
 

Network Intrusion Detection Using FP Tree Rules 
 

P Srinivasulu, J Ranga Rao 
Department of Computer Science and Engineering, V R Siddhartha Engineering College, Vijayawada 

I Ramesh Babu 
Department of Computer Science and Engineering, Acharya  Nagarjuna University,  Guntur 

 

----------------------------------------------ABSTRACT-------------------------------------------- 
In the faceless world of the Internet, online fraud is one of the greatest reasons of loss for web 
merchants. Advanced solutions are needed to protect e-businesses from the constant problems of 
fraud. Many popular fraud detection algorithms require supervised training, which needs human 
intervention to prepare training cases. Since it is quite often for an online transaction database to 
have Terabyte-level storage, human investigation to identify fraudulent transactions is very 
costly. This paper describes the automatic design of user profiling method for the purpose of 
fraud detection. We use a FP (Frequent Pattern) Tree rule-learning algorithm to adaptively 
profile legitimate customer behavior in a transaction database. Then the incoming transactions 
are compared against the user profile to uncover the anomalies. The anomaly outputs are used 
as input to an accumulation system for combining evidence to generate high-confidence fraud 
alert value. Favorable experimental results are presented. 

  

Keywords: Fraud detection, FP tree, anomalies, adaptive mining, association mining 

--------------------------------------------------------------------------------------------------------- 
Paper submitted: 11.04.2009  Revised: 24.06.2009 Accepted: 25.06.2009 

--------------------------------------------------------------------------------------------------------- 
 

1. INTRODUCTION 

In anomaly detection, the goal is to find objects that are 

different from most other objects. Often anomalous, 
objects are known as outliers, since, on scatter plot of the 
data, they lie far away from other data points. Anomaly 
detection is also known as deviation detection, because 
anomalous objects have attribute values that deviate 
significantly from the expected or typical attribute values, 
or as exception mining, because anomalies are exceptional 
in some sense.  
 There are a variety of anomaly detection 
approaches from several areas, including statistics, 
machine learning, and data mining. All try to capture the 
idea that an anomalous data object is unusual or in some 
way inconsistent with other objects. Our method for 
detecting fraud is to check for suspicious changes in user 
behavior. This paper describes the automatic design of user 
profiling methods for the purpose of fraud detection, using 
Frequent Pattern tree data mining techniques. Specifically, 
we use a rule-learning [1, 2, 3] program to uncover 
indicators of fraudulent behavior from a large database of 
customer transactions. Then the indicators are used to 
create a set of monitors, which profile legitimate customer 
behavior and indicate anomalies. Finally, the outputs of the 
monitors are used as features in a system that learns to 
combine evidence to generate high-confidence alarms. The 
system has been applied to the problem of detecting 
cellular cloning fraud based on a database of call records. 

Experiments indicate that this automatic approach 
performs better than hand-crafted methods for detecting 
fraud. Furthermore, this approach can adapt to the 
changing conditions typical of fraud detection 
environments. 

A novel fraud detection framework is proposed in 
this paper. Individual user’s behavior pattern is 
dynamically profile from the transactions by using a set of 
association rules. The association rule [1] is first 
introduced by Agarwal. The incoming transactions for that 
user are then compared against the profile in order to 
discover the anomalies, based on which the corresponding 
warnings are outputted. Our algorithm is evaluated on both 
synthetic data and real data. An experimental results shows 
that our algorithm can accurately differentiate the anomaly 
behavior from profile user behavior.  

2. THE BASIC IDEA 

     In this section, we will describe the basic idea of 
our fraud detection algorithm. Before doing so, we will 
first give some definitions.  

Definition 2.1. A Set of attribute-value pairs or items ∑ = 

{ai ,(vj)}, where i € {1, 2, ….., n }, n is the number of all 
possible attributes in the database we want to keep record, 
j € { 1, 2, .., m(i)}, m(i) is the possible values of attribute 
ai, m(i) is depended on the granularity specified along the 
attribute ai. We also use Ii to represent an attribute-value 
pair or item ai (vj) for simplicity.     An example of 
attribute-value pair is Price (“$1-$10”), where Price is an 



    Journal Of Advanced Networking and Applications                                                                             31 
    Vol. 01  No. 01 pages: 30-39 (2009) 
 

attribute, “$1-$10” is a value of this attribute. The possible 
values are depended on the granularity or interval of the 
attribute Price. The interval is $10 in this example. 
Another example of an attribute-value pair is Time 
(“Evening”), where Time is an attribute, “Evening” is a 
possible value. By different granularity the attribute-value 
pair could be Time(“9pm”). The different granularity could 
cause large differences on the performance of behavior 
profiling.  

Definition 2.2. The transactions are records of the 
form T(t) where t is a value of the time variable D. Each 
transaction consists of a set of certain attribute-value pairs 
from Σ recorded in a period of t. A transaction database 

contains all the transactions. 
The most recent transactions for an individual 

user in a transaction database are analyzed in order to 
profile the current behavior or habit for that customer. The 
word ‘recent’ is spelled by a slide window, which could be 
a time window or a transaction count window. For 
example, recent transactions could be all the transactions 
in the past two months, or the recent 500 transactions. The 
customer’s profile is utilized to monitor a new transaction 
of this user to indicate how unusual the new transaction is. 
At the same time, the customer’s old profile is 
automatically updated by accumulating the occurrences of 
the new attributes, which represents the user’s new 
behavior. It is quite reasonable to assume that a normal 
user should have a behavior pattern which indicates his or 
hers consuming interests or habits, since a totally randomly 
consuming behavior is very 
uncommon. 

We use a set of association rules to profile a 
user’s recent behaviour. 

Definition 2.3. Association rules [4] are the 
implication of the form X→Y, where 

  
The association rule X→Y is interpreted as data 

set that satisfies the conditions in X are also likely to 
satisfy the conditions in Y. An example of an association 
rule is:day(“Saturday”)^time(“8pm10pm”)→play(“Xbox 

contest”) [support=15%, confidence=77%]. 
The rule indicates that for all transactions of a 

customer recorded in a time window, 15% (support)  
transactions are playing “Xbox contest” in “Saturday”, 
“8pm-10pm”. There is a 77% probability (confidence) that 
if a transaction happens in “Saturday”, “8pm-10pm” it 
would be an Xbox contest. 

Two important measures for association rules, 
support and confidence, are defined as follows. 

Definition 2.4. The support, s, of an association 
rule is the ratio (in percent) of the transactions containing 
XUY to the total number of transactions analyzed, |R(t)|. If 

the support of an association rule is 15% then it means that 
15% of the analyzed transactions contain XUY. Support is 
the statistic significance of an association rule. The 
association rules have the supports less than 5% would be 
considered not very important to profile a user’s behavior. 
While a high support is often desirable for association 
rules. 

Definition 2.5. For a given number of 
transactions, confidence, c, is the ratio (in percent) of the 
number of transactions that contain XUY to the number of 
transactions that contain X. Thus if we say an association 
rule has a confidence of 77%, it means that 77% of the 
transactions containing X also contain Y. The confidence of 
a rule indicates the degree of correlation in the dataset 
between X and Y. It is used as a measure of a rule’s 
strength. Often a large confidence is required for 
association rules. Considered not very important to profile 
a user’s behavior. While a high support is often desirable 
for association rules. 

An FP-tree [11] (frequent pattern tree) structure 
and FP-tree growth algorithm, proposed by Han are 
utilized to uncover these hidden association rules from the 
recent transactions for this user. We improve the FP-tree 
growth algorithm to allow it to mine both intra-transaction 

associations and the inter-transaction association.  
Any new transaction of a user is compared 

against his or hers FP-tree to indicate the anomaly, which 
means how unusual the transaction is. A novel FP-tree 
based similarity measure algorithm is utilized to calculate 
the anomaly. We also use an accumulating algorithm to 
accumulate the low suspicious level warning to generate a 
high-confidence alarm. By comparing the alarm against a 
set of thresholds, corresponding fraud resolution could be 
performed. 

 
3. NMT FRAUD DETECTION       FRAMEWORK 

We will describe the architecture of our 
experimental system, NMT (New Mexico Tech) fraud 
detection framework in this section. Our system consists of 
three major modules: Data engine, rule engine and rule 
monitor. They are shown inside a dashed rectangle in 
Figure 1. The objects surrounding the FDS (fraud detection 
system) make a typical online transaction system, which 
includes several web applications and web services to 
provide OLTP (OnLine Transaction Process), a database 
storing transaction data, and a database replication in order 
to provide minimum performance degradation on OLTP by 
backend data process or analysis. 

FDS is a backend process, whose impact on the 
front end of the online system is minimized, since it only 
talks to the replication database. Data engine serves as an 
interface between the replication database and the FDS. It 
collects and pre-formats the recent transactions of all 
individual customers in the online system. The recent 
transactions depend on the detection sensitivity, which is 
specified by the customer through the web applications in 



    Journal Of Advanced Networking and Applications                                                                             32 
    Vol. 01  No. 01 pages: 30-39 (2009) 
 

OLTP. The rule engine module mines the recent 
transactions to generate a profile, an association rule set 
stored in an FP-tree, for each user. The FP-tree is updated 
adaptively after the new transactions of the user are added 
in replication database. The rule monitor module monitors 
the new transaction for every user. Any new transaction of 
a particular user is compared against the FP-tree for that 
user to indicate the anomaly. The anomaly is then mapped 
into a corresponding suspicious level, which is sent back to 
OLTP. The corresponding resolution is performed based 
on the suspicious level of a new transaction. In the 
following sub-sections of this paper, we will describe the 
implementation of rule engine and rule monitor in detail.  

 
3.1 ADAPTIVE ASSOCIATION RULE MINING 

The major responsibility of rule engine is to 
adaptively generate association rule sets to profile user 
behaviors. There are a large amount of techniques to mine 
association rules from a transaction  
 

 
Figure 1: Architecture of NMT fraud detection system.  

 
Database [6]. Agrawal introduced an Apriori-like 

mining method to mining association rules. An extension 
version of the Apriori algorithm [2] also by Agrawal is 
able to mine generalized, multilevel, or quantitative 
association rules [3]. Moe introduced association rule 
mining query languages. Ng introduced a constraint-based 
rule mining technique [16]. Cheung presented an 
incremental updating technique to discover the association 
rules in a large scale database. Agrawal proposed another 
technique to perform parallel and distributed mining. Brin 
introduced a dynamic itemset counting technique to reduce 
the number of database scans [4]. The most efficient 
association rule mining algorithm so far is the FP-tree 
growth algorithm [11] proposed by Han. It is able to mine 
the frequent patterns without candidate generation. Our 
fraud detection approach is largely based on this algorithm. 
The benefits of this method are highly condensed yet 
complete for frequent pattern mining, avoiding costly 
database scanning. More importantly, it allows us to 
adaptively generate user profile without preparing labeled 
data 
  
 
 
 

TID Transaction Data Frequent 

Item Sets 

1 ET, ST, EV, 129.138, 
L50 

ST, 129.138, 
EV, ET 

2 ET, ST, MR, 202.55, 
L10 

ST, ET, L10 

3 ET, SU, MR, 129.138, 
L50 

129.138, ET 

4 BK, ST, EV, 129.138, 
L10 

ST, 129.138, 
EV, L10 

5 CL, ST, EV, 129.138, 
L10 

ST, 129.138, 
EV, L10 

Table 1: An example of recent transactions for a customer. 

This table shows five transactions for a typical online 

transaction system. The right column lists the 

corresponding frequent itemsets. Minimum support value 

in this example is 60%. Minimum support is a user 

specified threshold for mining association rule from a 

database. 

 
Table 1 shows an example of five transactions. 

Each transaction is an itemset, which contains five items or 
attribute-value pairs. 

Definition 3.1. A set of items or attribute-value 
pairs is referred to as an itemset. The occurrence frequency 

of an itemset is the number of transactions that contain the 
itemset. This is also known as support count. The 
frequency of itemset {ST} is 4 in this example. 

Definition 3.2. If the occurrence frequency of an 
itemset is greater than or equal to the product of min_sup 

and the total number of transactions, then it is a frequent 

itemsets. The value of min_sup is called minimum support 

value. In the example shown in Table 1, the corresponding 
frequent itemset for transaction 2 is {ST, ET, L10}, since 
items MR, 202.55 are less than the minimum support 
value, 3 in this example (min_sup = 60%). Since the rarely 
occurred items would be filtered out when we generate the 
frequent itemsets, the rarely occurred behaviour such as 
fraudulent actions will be filtered out. That is the reason 
we could profile a user’s behaviour without the preparation 
of the labeled data. 

To profile the behaviour or a user, an FP-tree 
structure, introduced [13] by, is used to store compressed, 
crucial information about frequent pattern, from which 
association rules are generated. FP-tree is a combination of 
a general prefix tree and a linked list table. Figure 2 shows 
an example of creating a small FP-tree structure from the 
transactions shown in Table 1.  
 



    Journal Of Advanced Networking and Applications                                                                             33 
    Vol. 01  No. 01 pages: 30-39 (2009) 
 

 
 
(a) An empty FP-tree 

 
 
(b) After inserting {ST, 129.138, EV, ET} 

 

 
(c) After inserting {ST, ET, L10} 

 

 
(d) After inserting {129.138, ET} 

 

 
(e) After inserting 1st {ST, 129.138, EV, L10} 

 

 
 

(f) Insert 2nd {ST, 129.138, EV, L10} 
 

Figure 2: An example of an FP-tree construction 

 

The FP-tree stores quantitative information about 
frequent pattern. The tree nodes are arranged in such a way 
that more frequently occurring nodes will have a better 
chance of sharing nodes than lesser ones. From every tree 
node to the root, the path is a frequent pattern, from which 
association rules could be generated. 

FP-tree is constructed by accumulating the 
occurrences of the attributes in recent transactions of an 
individual customer. By mining an FP-tree, we can find all 
the conditional rules that correlate the presence of one set 
of features with that of another set of features. However, 
we are not interested in extracting these association rules. 
We use a pattern matching algorithm to compare a new 



    Journal Of Advanced Networking and Applications                                                                             34 
    Vol. 01  No. 01 pages: 30-39 (2009) 
 

transaction directly with the FP-tree to indicate the new 
transaction’s anomaly. It will significantly improve the 
overall system performance. The most attractive feature of 
the FP-tree is that it could be updated by accumulating the 
occurrences of the attributes without any human 
involvement. It is an ideal data structure to profile and 
monitor a non-stationary data set.  

To create an FP-tree, recent transactions should 
be scanned twice. The first scan of the transactions derives 
the set of frequent items. For example, the frequent itemset 
of the last transaction is {CL, ST, EV, 129.138, L10}. The 
frequent items are then sorted in the order of a descending 
support count. The resulting set or list is denoted L, which 
is {ST, 129.138, EV, L10} in this example L is utilized to 
construct a header table shown in the left side of Figure 
2(a). 

An FP-tree is then constructed from an empty 
root, shown in Figure 2(a). Branches of the FPtree are then 
inserted into the tree by scanning the transactions a second 
time. The items in each transaction are processed in L 

order, and a branch is created for each transaction. For 
example, the scan of the first transaction, “ET, ST, EV, 
129.138, L50”, which contains four items {ST, 129.138, 
EV, ET} in L order, shown in the first data row of Table 1, 
leads to the construction of the first branch of the tree with 
four tree nodes: {ST}:1,{129.138}:1,{EV}:1 and{ET}:1, 
where {ST}:1 is linked as a child of the root, {129.138}:1 
is linked to {ST}:1…, shown in Figure 2(b). The number 
after the semicolon in the tree node shows the current 
occurrence of an item. To make tree traversal easy, an item 
header table is built so that each item pointer points to its 
occurrences in the tree via a chain of node links. The items 
in the header table are absolutely the same as the element 
in L.  

The second transaction is processed in the same 
way as the first one. T2, “ET, ST, MR, 202.55, L10” 
contains {ST}, {ET} and {L10} in L order. These items 
would result in a branch where {ST}:1 is linked to the root 
and {ET}:1 is linked to {ST}:1, {L10}:1 is linked to 
{ET}:1. However this branch would share a common 
prefix, {ST}, with the existing path for T1. Therefore we 
should increase the count of the {ST} node by 1, and 
create two new tree nodes, {ET}:1 and {L10}:1, which is 
linked as a child tree of {ST}:2, shown in Figure 2(c). In 
general, when considering the branch to be added for a 
transaction, the count of each node along a common prefix 
is increased by 1, and nodes for the items following the 
prefix are created and linked accordingly. The repeated 
insertion for T3 – T5 are shown in Figures 2(d)–(f). 

The size of an FP-tree is largely dependent on the 
minimum support, which decides the size of the frequent 
itemset for a transaction after filtering. The FP-tree is 
constructed from these itemsets. Therefore, the smaller 
minimum support value leads to a larger FP-tree, which 
profiles a user’s behaviour more accurately, since it stores 
some associations having relatively small support counts. 

However it requires more time to construct. The tradeoff 
between accurate profiling and time for tree construction is 
shown in Figure 3. 

We can get all association rules under the 
condition of a particular frequency item by following its 
node link chain in header table. For example, to get all 
rules for {L10} we should firstly search the header table to 
find the node link chain of {L10}. The first node in the 
link chain is {L10}:2, whose prefix path is ({ST}:4, 
{129.138}:3, {EV}:3). The corresponding association is  

 
                               (a) 

 
(b) 

Figure 3: Effect of decreasing minimum support value on a 

FP-tree. (a) FP-tree nodes increase when minimum 

support value decreases. (b) FP-tree construction time 

increases when minimum support value decreases. The 

experiment is performed on the synthetic data. 10K 

transactions are used in this experiment. 
({L10})→({ST}, {129.138}, {EV}) [40%, 67%], 

where 40% is the support, 67% is the confidence. The 
support value is calculated by dividing current nodes’ 
occurrence count, 2 in this example, by total transaction 
count, 5 in this example. It indicates how important this 
rule is to profile the user behavior. We calculate the 
confidence by dividing current frequency node’s 
occurrence count, 2 in this example, by the node’s total 
occurrences, 3 in this example. It shows how strong this 
rule is. By following current node’s link chain, we con get 
the second tree node {L10}:1. The corresponding 
association is {L10}->({ST},{ET}) [20%,33%], which is 
generated in the same way. This process continues until 
the null link chain pointer is met. 

 



    Journal Of Advanced Networking and Applications                                                                             35 
    Vol. 01  No. 01 pages: 30-39 (2009) 
 

3.2 FP-TREE BASED PATTERN MATCHING 

ALGORITHM 

Two techniques are utilized to build the rule 
monitor. To indicate the anomaly of a new transaction, we 
designed a novel FP-tree based pattern matching 
algorithm. And an alert accumulating algorithm is used to 
lower the false alarm and to detect a set of fraudulent 
transactions with low suspicious values.  

For each frequent item ti in an FP-Tree, we should 
find all the prefix paths of ti, which is the sub patterns base 
under the condition of ti’s existence. These prefix paths do 
not include all the possible patterns containing ti. Since, 
some patterns are filtered by minimum support. An 
incoming transaction having more than one item in the 
header table means that this transaction matches the single 
frequent pattern in some level. To discover in what extent 
the new transaction matches the association rules, we need 
to walk through the FP-tree by following the header table 
link chains to compare that transaction to every sub pattern 
base.  

double SimMatch(T) { 
  sim = 0.0; 
for each item ti in T { 
    if ( found headtablelink, in the head table ) { 
        sim_credit = 0.0; 

        for each tree node in N
j

i  in headtablelink, 

if (Pj(ti) ⊆  T ) 

       sim_credit += G(N
j

i .s, N
j

i  .c)  x  weight(ti); 

          sim += sim_credit; 
          } 
     } 
return sim; 
} 

      The above pseudo code shows the pattern matching 
algorithm for calculating the similarity between a new 
transaction and the user’s FP-Tree. Suppose T = 
{t1,t2,…,tn} is an incoming transaction. For each frequent 
item t we calculate a similarity creditsim_credit(ti). by the 
following steps: Search ti in header table. If not find, 
sim_credit(ti) = 0. Otherwise, follow the link chain to the 
first tree node Ni 1 containing ti. A conditional frequent 
pattern (set of frequent items) can be obtained by 
following Ni 1’s parent link until it reaches the root. Let’s 
denote the attributes set in this pattern as P1(ti). If P1(ti) T, 
sim_credit(ti) is increased by a credit function, G(s, c), 
based on the support and the confidence of Ni 1. In our 
implementation, we used an entropy like function: G(s, 
c)=–sx  log2(1+ε–c), where s is the support, c is the 
confidence, s≤c≤1.0, ε is a real number used to specify the 
upper boundary of function G. The function is chosen by 
the intuition that if a new transaction matches with a rule 
having larger probability it is more likely to match the 
user’s behavior, and the confidence value is emphasized. 

Since different kinds of frequent items are of 
different importance to profile a user or a system. A weight 
function, weight(ti), was used to give various stress to the 
different item types. So we increase sim_credit(ti) by G(s, 
c) x weight(ti) instead of G(s, c). The weight function 
could be a fixed look up table, which maps the different 
item types to different weights. It is also possible to use a 
neural network to train real data to get the optimized look 
up table. 

After Ni
1 is processed, we follow the link chain of 

Ni
1 to reach the second tree node, Ni

2, containing ti. For 
that tree node we do the same thing as to Ni

1.The process is 
stopped when the Ni

j’s link chain pointer is null. The 
similarity value for T is computed as:  

∑ =
=

n

i itcreditsimTsim
1

),(_)(   

where  sim_credit(ti) = weight(ti) x ∑j G(Ni
j.s, Ni

j.c), j is the 
index of the node containing ti found by following the head 
table link of ti. 

The sim(T) would be mapped into a 
corresponding suspicious value. Similarity value 
represents the extent that a new transaction is comparable 
to the customer behavior patterns. The minimum similarity 
value is zero, which means not a single rule is matched 
between the new transaction and the user pattern. It 
indicates the highest suspicious level. By contrast, the 
larger similarity value means a smaller suspicious level. 

 

3.3 ALERT ACCUMULATING ALGORITHM 

We can setup a set of thresholds to fire 
corresponding fraud warnings. Technically, it is possible to 
mis-classify some legal transactions, which do not follow 
the customer’s normal behavior. Since the frequent items 
are filtered by min support before creating the FP-tree. 
Therefore the tree is not completed, the very unusual 
patterns are not collected in the tree. Moreover, a customer 
could also suddenly change his or her behavior. Another 
important issue is that in order to minimize the fraud 
detection cost, the purchased amount is a factor of firing 
alarm. For a very small purchase amount, for example 
.50$, even it is highly suspicious, fire an alarm is not 
economical. Since the objective of fraud detection action is 
to minimize the total cost. The cost model section explains 
this issue in detail. By using a suspicious threshold for a 
single transaction, a sequence of fraud transactions with 
low purchasing amounts could be missed. 

 
 
Figure 4: Suspicious values within accumulation 
window. The height of a point indicates the 



    Journal Of Advanced Networking and Applications                                                                             36 
    Vol. 01  No. 01 pages: 30-39 (2009) 
 

suspicious value of this transaction. T0 is the moment 
that the FP-tree is most recently updated. T1 is the 
current time. T1 and T2 is the boundary of the 
accumulation window. 

To solve these problems, we use a novel 
technique to accumulate the warnings from a set of new 
transactions.  

We calculate the alert values for a set of 
transactions by accumulating their suspicious values. The 
transactions to be processed could include all the new 
transactions after last FP-tree updating, or we can use an 
expiring time window to specify the transactions we would 
like to accumulate. Then by comparing the alert sum 
instead of the single alert against a set of thresholds, a 
corresponding fraud alarm would be fired. The threshold 
set is decided by the detection sensitivity specified by the 
user. 

We accumulate all transactions within the 
specified time window (T2~T1), as shown in Figure 4, by 
adding them together with the same emphasis. A simple 
step function is the most straightforward expiring function. 
Some examples of the expiring functions are shown in 
Figure 5. For a step function, if time of a transaction, t, is 
larger than T2, f(t) equals to 1, else f(t) equals to 0. We 
also can emphasize the transactions that happen more 
recently by using either the nature logarithm function or 
the polynomial functions. 

The fraud alert value is calculated by: 

AlertValue=∑ =

n

i 1
(s(Ti)xf(Ti) x amount(Ti)), where Ti is a 

transaction in the accumulation window, s(Ti) is the 
suspicious value of Ti, f(Ti) is the expiring weight of Ti 

specified by expiring function, amount(Ti) is the consumed 
money of transaction Ti . It is reasonable that several 
highly suspicious transactions having very low consumed 
points will not fire an alert, by contrast, only one highly 
suspicious transaction having very high consumed points 
could fire an alert.  

4. PERFORMANCE STUDY 

4.1 DATA PREPARATION 

The real commercial database for performance 
evaluation is far more than possible. The only available 
real time data for our experiments is a set of American 
Express Credit Card transactions of an individual user 
within three and a half years. It is inadequate to measure 
the system performance since the real time behaviors could 
be various from user to user. To evaluate the system’s 
effectiveness on different kinds of user behaviors, we 
created a tool to simulate different kinds of user behaviors. 
We then tested and evaluated NMT-FDS and other well 
known algorithms (Naive Bayes, C4.5, BP, SVM) on the 
same data sets. 

Diversity real time user behavior requires a 
powerful and flexible simulator. To generate the various 
user patterns, profile driven is an effective solution, since 
the profile could be creatively designed in order to 

represent complex patterns. Our simulator is similar to the 
one proposed [8] by Chung, whose functions are parsing 
the user profile and modeling the user behavior by 
following the rules defined in the profile file. 

The simulated data has the very similar formation 
as the American Express data. Table 1 is an example of the 
simplified record coming from the simulated data sets. 
Two different types of user profiles are used in our 
experiments to simulate the relatively regular behaviors 
and the relatively irregular behaviors. An example of 
regular behavior profile used in experiments is: most of the 
transactions come from a small IP group, most transactions 
take place at weekend, transactions are purchasing a group 
of products, the transactions likely occur in the evening. 
An example of irregular behavior is: transactions come 
from dynamic IPs, most transactions take place at weekend 
and transactions are purchasing a group of products. 

For both of the profiles, we create 3000 legal 
transactions and 50 fraudulent transactions as a labeled 
training set to train the supervised classification 
algorithms. Our approach takes all 3050 transactions as an 
unlabeled data set, that is to say, we don’t know the 
fraudulent and legitimate when we create the user profile. 
The trick is that the fraudulent behavior with very low 
occurrence ratio will be filtered out when we create the 
FP-tree. We also create 3000 legal transactions and 20 
fraudulent transactions as testing data.  

4.2 EXPERIMENT RESULTS 

Figure 5 on the following page shows the 
performance comparison among BP, NB, SVM and 
NMTFDS on both real time and simulated data. We use 
the ROC (Receiver Operating Characteristics) curve to 
evaluate these classification algorithms.  

Figures 5(1)–5(3) show the ROC curves of three 
algorithms on relatively regular data. The areas under the 
ROC are very close to 1, which means they work well to 
differentiate fraudulent data against regular behavior data. 
Figures 5(4)–5(6) show the ROC curves on a test data set 
of the irregular behaviors. Figure 5(7)–5(9) show the ROC 
curves on a data set of an American Express user. 
Experimental results show that our algorithms, NMT-FDS 
works much better on irregular data than other algorithms. 
The reason is that dynamic IPs in irregular behavior data 
set introduces noises which largely hamper accurate 
learning of NB, SVM and BP. Since noises or rarely 
attributes. Such as dynamic IPs would be automatically 
filtered by the min-support, FSD is capable to work on the 
irregular data. A tree based classification algorithm, C4.5, 
has also been studied. It has a very similar performance to 
NMT-FDS. However the supervised learning makes C4.5 
inadequate for adaptively profile updating. 



    Journal Of Advanced Networking and Applications                                                                             37 
    Vol. 01  No. 01 pages: 30-39 (2009) 
 

       Simulated Regular Data                               Simulated Irregular Data                          American Express Data 

 

 
 
      
 

Figure 5: ROC curve comparison among the different algorithms. (1)–(3) show the ROC curves of  
different three algorithms on relatively regular data. (4)–(6) show the ROC curves on relatively irregular data.  
(7)–(9) show the ROC curves on a data set of a single American Express user. 
   

(1) (4) 

(5) 

(6) (3) (9) 

(2) (8) 

(7) 

BP 

NB 

SVM 



    Journal Of Advanced Networking and Applications                                                                             38 
    Vol. 01  No. 01 pages: 30-39 (2009) 
 

ROC curve is a very convenient way of 
comparing the performance of classifiers, 
however it cannot show the misclassification 
cost. To measure the benefit of detecting fraud, 
we used a Cost Model introduced by Chan  a 
more realistic model [5], to accompany the 
different classification outcomes. A cost model 
formulates the total expected cost of fraud 
detection. It considers the trade off among all 
relevant cost factors and provides the basis for 
making appropriate cost sensitive detections. The 
detection outcome is one of the following: hit, 

false alarms, miss, and normal. They are 
outlined in Table 2.  
 

Prediction Fraud Legal 

Alert  Hit False Alarm 

No alert  Miss Normal 

Table 2: Outcome Matrix for fraud detection 

 

5. CONCLUSIONS AND FUTURE WORK 
We have presented a framework for 

detecting fraudulent transactions in an online 
system. We describe the major modules of the 
framework and the related algorithms in detail. A 
prototype of the fraud detection system has been 
built to evaluate our algorithm. A profile driven 
simulator is designed to generate transaction data 
representing various behavior patterns in order to 
evaluate the performance of our algorithm. 
Comparisons are performed among NMT-FDS, 
C4.5, NB, BP and SVM. Table 3 shows a 
summary of the qualitative comparison. Our 
system generates fraud alarm accurately and 
efficiently on both the simulated and real data. 
Unsupervised training and self adjustment to 
changing user behavior make our system 
effective for monitoring online transaction 
systems and provide fraud detection and 
protection.  

In the future, we will extend our system 
to detect system level fraud by utilizing an 
approximate weighted tree matching algorithm. 
Inter-transaction behavior mining is also planned 
to enhance the performance of individual user 
profiling. Our future work also includes 
optimizing pattern matching algorithm, 
optimizing weight selection for different types of 
rules by real data training and expanding our 
algorithm to real-time fraud prevention. 

 
 
 
 

 
 

Algorit

hms 

Effec

tiven

ess 

Scala

bility 

Spe

ed 

Trainin

g Data 

Adap

tabili

ty 

NB Vario
us 

Good Go
od 

Labeled Poor 

C 4.5 Good Poor Fin
e 

Labeled Poor 

BP Fine Good Poo
r 

Labeled Poor 

SVM Fine Good Poo
r 

Labeled Poor 

NMT-
FDS 

Good Good Fin
e 

Unlabel
ed 

Good 

 
Table 3: Summary of qualitative comparison of 

algorithms.  

 
Table 3 shows Effectiveness highlights 

the overall predictive accuracy and performance 
of each algorithm. Scalability refers to the 
capability to construct a model effectively given 
large data sets. Speed indicates the efficiency in 
model construction. Training data shows the 
training data in model construction. Adaptability 
refers the capability and efficiency to adjust the 
model to follow the changes of the user 
behaviors. 

REFERENCES 

[1]. Agrawal, R and Srikant, R (1993): Fast 
algorithms for mining association rules. In 
Proc. of the 20th Intl. Conf. on Very Large 

Data Bases, 478–499. Santiago, Chile. 
[2]. Agrawal  R and Srikant, R  (1995): Mining 

sequential patterns. In Proc. of the 

International Conference on Data 

Engineering, 3–14. Taipei, Taiwan. 
[3]. Agrawal R. and Shafar J. (1996): Parallel 

mining of association rules. IEEE 

Transactions on Knowledge and Data 

Engineering 8 (6): 962–969. 
[4]. Brin S, Motwani R. and Silverstein, C. 

(1997): Beyond market basket: generalizing 
association rules to correlations. In Proc. of 

the ACM SIGMOD Intl. Conf. on 

Management of Data, 265–276. Tucson, 
Arizona, USA. 

[5]. Chan, P. and Stolfo, S. (1998): Toward 
scalable learning with non-uniform class 
and cost distributions: A case study in 
credit card fraud detection. Proc. of the 

Fourth International Conference on 

Knowledge Discovery and Data Mining, 
164–168. 

[6]. Cheung, D., Han, J,  NG, V. and  Wang  C. 
(1996): Maintenance of discovered 
association rules in large databases: an 



    Journal Of Advanced Networking and Applications                                                                             39 
    Vol. 01  No. 01 pages: 30-39 (2009) 
 

incremental updating technique. In Proc. of 

the Intl. Conf. on Data Engineering, 106–
114. New Orleans, Louisiana, USA. 

[7]. Clear Water  S. and Provost, F. (1993): 
RL4: A tool for knowledge-based 
induction. In Proc. of the Second 

International IEEE Conference on Tools 

for Artificial Intelligence, 24–30. 
[8]. Chung M,  Puketza N.J, Olsson R.A. and 

Mukaerjee B. (1995): Simulating 
concurrent intrusions for testing intrusion 
detection systems: parallelizing intrusions. 
Proc. of the 1995 National Information 

Systems Security Conference, 173–183. 
[9]. Domingos P. and Pazzani M. (1996): 

Beyond independence: conditions for the 
optimality of the simple Bayesian classifer, 
in Proc. of the 13th Conference on Machine 

Learning, 105–112, Bari, Italy. 
[10]. Elkan C. (2000): Magical thinking in data 

mining: lessons from CoIL challenge 2000, 
Department of Computer Science and 
Engineering, University of California, San 
Diego, USA. 

[11]. Elkan C. (1997): Naive Bayesian Learning. 
Technical Report CS97–557, Department of 
Computer Science and Engineering, 
University of California, San Diego, USA. 

[12]. Han J. and Kamber M. (2000): Data 

Mining: Concepts and Technique, Morgan 
Kaufmann; 1st edition. 

[13]. Han J., Pei J. and Yin Y. (2000): Mining 
frequent patterns without candidate 
generation. SIGMOD’00, 1–12, Dallas, TX, 
USA. 

[14]. Kerr K. and Litan A. (2002): Online 
transaction fraud and prevention get more 
sophisticated, Gartner.  

[15]. Meo  R., Psalila A G. and Ceri  S. (1996): 
A new SQL-like operator for mining 
association rules. In Proc. of the 22

nd
 Intl. 

Conf. on Very Large Data Bases, 122–133. 
Mumbai, India. 

[16]. NG  R, Lakshmanan L, Han  J. and Pang  
A.  (1998): Exploratory mining and pruning 
optimizations of constrained association 
rules. In Proc. of the ACM SIGMOD Intl. 

Conf. on Management of Data, 13–24. 
Seattle, Washington, USA. 

 

Author’s Biography                                                                                                                                                   

 P. Srinivasulu received  his B.Tech        

 from Acharya  Nagarjuna  university, 
Guntur, AP in 1994 and completed 
post graduation from Jawaharlal  
Nehru Technological University, 

Hyderabad in 1998.  He is currently pursuing 
Ph.D from Acharya Nagarjuna University, 
Guntur and working as Assistant Professor in V 
R Siddhartha Engineering College, in the 
Department of Computer Science and 
Engineering, Vijayawada, Andhra Pradesh. His 
research interest includes Data Mining and Data 
Warehousing, Computer Networks, Network 
security and Parallel Computing. He has more 
than thirteen years of experience in teaching in 
many subjects, industry and in research. He is 
the member of Indian Society of Technical 
Education (ISTE) and also member of Computer 
Society of India(CSI). He has many publications 
in National and International conferences.  He 
was selected for the Journal of Who is who. 

 

Mr. J Ranga Rao received his B. 
Tech in Computer Science and 
Engineering, J N T University, 
Hyderabad in 2005. He also 
received his M. Tech in Computer 

Science and Engineering from J N T University, 
Kakinada in 2008. Presently working as a 
Lecturer in the department of computer science 
and engineering of V R Siddhartha Engineering 
college, Vijayawada. He is an associative 
member of IST, India. 

 

Dr. I Ramesh Babu received his 
Ph. D   in   Computer Science from 
Acharya  Nagrjuna University, 
Guntur, M. E in Computer 
Engineering from Andhra 
University, B.E in Electronics and 

Communication Engineering from University of 
Mysore. He is currently working as Professor in 
the department of Computer Science, Nagarjuna 
University. Also he is Senate member of the 
same university from 2006. He held many 
positions in Acharya Nagarjuna University as 
Head, Director-Computer Center, Chairman-
Board of studies. He was a special officer, 
convener of ICET, Andhra Pradesh. He is also 
member of board of studies for the other 
universities. His areas of interest include image 
processing, computer graphics, cryptography, 
artificial intelligence, and network security. He is 
a member of IEEE, CSI, ISTE, IETE, IGISS, and 
Amateur Ham Radio (VU2 IJZ). He is currently 
supervising ten Ph. D students who are working 
in different areas of image processing and 
artificial intelligence. He has published 35 papers 
in international journals and conferences. 


